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Abstract- A common method of image modification is known 

as copy-move forgeries. This method involves copying and 

pasting a portion of an image onto another location, 

typically with the intention of concealing or changing 

information. Within the realm of digital media forensics, it is 

frequently encountered, and its applications include the 

detection of images that have been altered, the verification of 

authenticity, and the maintenance of integrity in legal and 

journalistic contexts. At the moment, the detection of copy-

move forgery is primarily dependent on manual analysis 

performed by forensic specialists. The procedure is visually 

evaluating photographs, searching for abnormalities in the 

patterns, lighting, and textures of the images. Manual 

analysis, despite its dependability, is time-consuming and 

resource-intensive, which limits its scalability and efficiency 

in the management of huge datasetsIn the proposed copy-

move forgery detection system, VGG16 is utilized as a 

feature extractor to identify patterns indicative of tampered 

regions, leveraging its hierarchical convolutional layers to 

capture both global and local inconsistencies in images. The 

extracted deep features are then processed using DBSCAN 

clustering, which segments the image by grouping similar 

feature points and isolating potential forged areas based on 

density. This combination enhances forgery detection by 

effectively identifying duplicated regions while filtering out 

noise. The detected regions are then refined using 

morphological operations, and the results are visualized by 

overlaying the forgery map on the original image. This 

approach ensures robust and high-precision detection of 

manipulated content, making it highly effective for image 

authentication tasks. 

Keywords: Copy-move forgery, digital image forensics, 

transfer learning, VGG16, feature extraction, DBSCAN 

clustering, image tampering detection, morphological 

operations, forgery localization, image authentication. 

 

I. INTRODUCTION 
As a result of technological advances and the convenience of the 
internet, human beings are now able to easily access interesting 
multimedia from the internet and remake or tamper with it as 
they see fit. Copy-move forgery imaging is a special type of 
forgery that involves copying parts of an image and then pasting 
the copied parts into the same image. Hence, image forensics 

associated with copy-move forgery detection have become 
increasingly important in our networked society. Hence, a large 

majority of image forgery detection methods adopt a passive-
based strategy to perform the type of tampering identification 
discussed in the present study. Copy-move forgery is a 
significant challenge in the realm of digital image forensics. 
This type of manipulation involves duplicating a part of an 
image and pasting it elsewhere within the same image. The 
intention behind such forgeries varies, from altering evidence in 

legal cases to misleading viewers in journalistic contexts. The 
core challenge lies in the subtlety of these manipulations, as the 
copied region typically blends seamlessly with the surrounding 
area, making detection difficult. Deep learning, particularly 
through the use of convolutional neural networks (CNNs) like 
VGG 16, presents a promising approach. These models, trained 
on extensive datasets, excel in feature extraction and can 
identify subtle patterns indicative of tampering. The hierarchical 

structure of CNNs allows them to detect both global and local 
inconsistencies, enhancing their effectiveness in identifying 
copy-move forgeries. 

II. LITERATURE SURVEY 

Xiao B. et al. [1] proposed a method for detecting image 

splicing forgery by integrating a coarse-to-refined convolutional 

neural network (CNN) with adaptive clustering. The authors 

focused on enhancing the accuracy of forgery detection by 

refining the CNN architecture to capture more detailed features 

of spliced regions. Their approach was particularly effective in 

distinguishing between forged and authentic regions in complex 

images. Saini K. et al. [2] conducted a study on the forensic 

examination of computer-manipulated documents using image 

processing techniques. Their research aimed to develop 

methodologies for detecting and analyzing alterations in digital 

documents, emphasizing the importance of image processing in 

forensic investigations. The proposed techniques were designed 

to improve the detection of tampered regions in various types of 

digital documents. Lyu Q. et al. [3] presented a copy-move 

forgery detection method based on double matching techniques. 

The authors introduced an approach that first identifies potential 

forged regions through initial matching and then refines the 

detection using a secondary matching process. This method was 

demonstrated to be effective in improving the accuracy of 

detecting copy-move forgeries, especially in cases where 

traditional single matching methods failed. Shadravan S. et al. [4] 

introduced the Sailfish Optimizer, a novel nature-inspired 

metaheuristic algorithm designed to solve constrained 

engineering optimization problems. The authors demonstrated 
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that the algorithm mimics the hunting behavior of sailfish and is 

capable of finding optimal solutions with high accuracy and 

efficiency. The proposed optimizer was tested on various 

engineering problems and showed superior performance 

compared to other metaheuristic algorithms. Jia H. et al. [5] 

proposed the Remora optimization algorithm, a novel 

metaheuristic approach inspired by the symbiotic relationship 

between remoras and their host animals. The algorithm was 

designed to solve complex optimization problems by leveraging 

the cooperative behavior observed in nature. Their study 

highlighted the effectiveness of the Remora optimization 

algorithm in achieving high-quality solutions for various 

optimization tasks. Abualigah L. et al. [6] developed the Aquila 

optimizer, a new meta-heuristic optimization algorithm based on 

the hunting strategy of the Aquila bird. The authors applied this 

algorithm to a range of optimization problems and demonstrated 

its robustness and efficiency in finding optimal solutions. The 

Aquila optimizer was particularly noted for its ability to balance 

exploration and exploitation in the search space. Heidari Ali 

Asghar et al. [7] introduced the Harris Hawks Optimization 

(HHO) algorithm, a nature-inspired algorithm based on the 

cooperative hunting strategy of Harris hawks. The study 

presented the algorithm's application to various complex 

optimization problems, showing that it effectively handles both 

unimodal and multimodal optimization tasks. The authors 

highlighted HHO's adaptability and high convergence speed 

compared to other algorithms. Badr A., Youssif A., Wafi M. [8] 

proposed a robust copy-move forgery detection method in 

digital image forensics using the Speeded-Up Robust Features 

(SURF) algorithm. Their approach aimed to improve the 

detection of copy-move forgeries by leveraging the SURF 

algorithm's capability to extract distinctive features from images. 

The method was shown to be effective in identifying forged 

regions under various image transformations.  

III. METHODOLOGY 

 

A. SYSTEM ARCHITECTURE 

 

 
Figure.1: System Architecture 

 

The system architecture is a workflow for image tampering 
detection using a deep learning and clustering-based approach. 
The process begins with Pre-processing of the input image, 

followed by Feature Extraction using a convolutional neural 
network (CNN). The extracted features are then used for Feature 
Matching, which is further refined through Filtering. Two 
parallel steps then occur: Clustering using DBSCAN segments 
the image based on feature similarity, and Classification 

identifies tampered regions. The final output highlights the 
Tampered Image, with forged areas clearly marked for detection. 

Step 1: Copy–Move Forgery Dataset 
we employ the MICC-F220 dataset, a well-established 
benchmark for copy–move forgery detection. This dataset 
comprises two main classes: “Au” (authentic images) and “Tu” 
(tampered images), each containing 110 high-resolution 
photographs. Tampered images are generated by copying a 

region from one part of an image and pasting it elsewhere—
sometimes with post-processing such as smoothing or color 
adjustment—to conceal the manipulation. We organize the 
dataset in a simple folder structure (“MICC-F220/Au” and 
“MICC-F220/Tu”), which allows us to iterate through each 
directory, automatically extract the true class label from the 
folder name, and build balanced arrays of image data (X) and 
corresponding labels (Y) for subsequent processing. 

Step 2: Image Preprocessing  
Prior to model training, each image undergoes a standardized 
preprocessing pipeline. First, we read every image using 
OpenCV, resize it to a uniform 64×64 pixel grid, and convert the 
color space from BGR to RGB. For the deep-learning branch, 
we further normalize pixel values to the [0, 1] range by dividing 
by 255. Concurrently, we encode the folder-derived class names 
into integer labels via a simple lookup function (getLabel) and 

then transform these labels into one-hot vectors when preparing 
data for the VGG16-based classifier. For the traditional 
machine-learning branch, we flatten the normalized 64×64×3 
arrays into 1D feature vectors and store both feature and label 
arrays as NumPy .npy files, facilitating quick reloads in future 
runs. 

Step 3: Existing Logistic Regression Classifier (LRC) 

Development 
As a baseline, we implement and evaluate a Logistic Regression 

Classifier (LRC) on the flattened feature vectors. After splitting 
the preprocessed data into an 80:20 train–test partition (using a 
fixed random seed for reproducibility), we instantiate a Logistic 
Regression model with an L2 penalty. The model is trained on 
the training set and persisted to disk as LRC_model.pkl. During 
evaluation, we compute accuracy, precision, recall, F1-score, 
sensitivity, and specificity, and visualize the confusion matrix 
with Seaborn . 

Step 4: Proposed VGG16 Transfer-Learning Model 
To leverage deep representations, we adopt VGG16 pre-trained 
on ImageNet as a fixed feature extractor. We strip off its 
original fully connected “top” layers, freeze all convolutional 
weights, and append a lightweight classification “head” 
composed of average‐pooling, flattening, a 256-unit dense layer 
with ReLU, a 50% dropout for regularization, and a final 
softmax layer matching our two classes. The model is compiled 

with the Adam optimizer and binary crossentropy loss. We train 
for 30 epochs (or load pre‐saved weights if available), saving the 
best checkpoint to vgg_weights.hdf5. Post-training, we predict 
on the test set and report comprehensive metrics and a confusion 
matrix. This architecture captures hierarchical image features—
textures, edges, and object parts—that are crucial for 
distinguishing authentic from tampered regions. 

Step 5: Image Segmentation via DBSCAN Clustering 
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For localizing the forgery, we combine superpixel segmentation 
with density-based clustering. Given an input image, we first 
apply SLIC (Simple Linear Iterative Clustering) to partition it 
into ~50 superpixels in the CIELAB color space, then compute 
an average-color feature vector for each segment. We perform 

DBSCAN on these feature vectors (eps = 0.04, min_samples = 5) 
to group visually similar regions and generate a segment map. 
We overlay the segment boundaries on the original image for 
visualization. Next, we feed a resized version of the image 
through our trained VGG16 model to predict whether the image 
contains copy–move forgery. If so, we extract SIFT keypoints 
and descriptors from the image, cluster the descriptors again via 
DBSCAN (eps = 40, min_samples = 2), and for each cluster with 

multiple keypoints we draw a bounding rectangle to highlight 
the suspected duplicated region. Finally, we annotate the image 
with a textual warning (“Copy Move Forgery Detected”) and 
present a side-by-side view of the original image, segmented 
map, and detected-forgery result. 

Step.6: Data Splitting & Preprocessing 
The preprocessing of image data for traditional machine 
learning algorithms involves flattening and numerical 

representation of image pixels. The function image 
Processing_for_ML() initiates the process by identifying the 
dataset directory, MICC-F220, which is expected to contain 
subfolders for each class (e.g., authentic or tampered images). 
Each subfolder corresponds to a category label. If preprocessed 
numpy files (X1.txt.npy, Y1.txt.npy) already exist in the model 
folder, the script directly loads them using NumPy. If not, the 
program reads each image using OpenCV, resizes it to a 

standard 64×64 resolution with 3 color channels, and flattens the 
3D image array into a 1D vector using flatten(). These vectors 
are collected into the X1 array, while the class indices (inferred 
from folder names) are stored in Y1. Once the image vectors 
(X1) and their corresponding labels (Y1) are prepared, they are 
converted into NumPy arrays and saved to disk for future use. 
This preprocessed data serves as the feature set for training 
traditional machine learning models. Afterward, the 
Train_Test_split_for_ML() function splits this data into training 

and testing subsets using an 80/20 ratio. The train_test_split 
function from scikit-learn ensures reproducibility using a fixed 
random_state. Finally, model evaluation is handled via the 
calculateMetrics_ML() function. This function computes key 
performance metrics such as accuracy, precision, recall, F1-
score, sensitivity, and specificity using the predicted labels from 
the model. It also generates a classification report and visualizes 
the confusion matrix using Seaborn’s heatmap. 

B. ALGORITHM  
One of the most well-known Machine Learning methods is 
logistic regression, which is part of the Supervised Learning 
method. With a set of independent factors, it can be used to 
guess the categorical dependent variable. Logistic regression 
guesses what will happen with a category dependent variable. 
Because of this, the result must be a discrete or categorical 
number. It could be Yes or No, 0 or 1, true or false, etc., but it 

doesn't give exact numbers like 0 and 1, it gives probabilities 
that are between 0 and 1. Logistic Regression is a lot like Linear 
Regression, but it is used in a different way. Logistic regression 
is used to solve classification problems, while linear regression 
is used to solve regression problems. In logistic regression, we 
don't fit a regression line; instead, we fit a "S"-shaped logistic 
function that tells us what the two highest values will be.  It's 
possible that the cells are cancerous or not, that a mouse is 

overweight or not based on its weight, etc., based on the logistic 
function's slope.  
Logistic Regression is a powerful machine learning method that 
can use both continuous and discrete datasets to give 
probabilities and sort new data into groups.  

 
Figure 2: Logistic Regression  

Logistic Regression is a supervised learning algorithm used for 
binary classification problems. It predicts the probability of a 
class using the sigmoid activation function, which maps values 
between 0 and 1. The model computes a weighted sum of input 

features and applies the sigmoid function to determine the 
output. It uses cross-entropy loss (log-loss) as the cost function 
and updates weights via gradient descent. Logistic Regression 
assumes a linear relationship between input features and the log-
odds of the target variable.  

Comparing of both algorithm 
While Logistic Regression offers simplicity and interpretability 
by modeling a linear decision boundary on manually engineered 

features, it inherently struggles with the complex, non-linear 
visual patterns present in raw image data—requiring extensive 
preprocessing and often failing to generalize beyond those 
engineered inputs. In contrast, a CNN based on VGG16 
automatically learns deep, hierarchical representations directly 
from pixels, capturing low-level edges and textures up through 
high-level object parts without manual feature design; its 
pre-trained weights from ImageNet give it a powerful head start 
even on limited datasets, and its convolution-pooling structure 

imparts robustness to shifts, noise, and distortions. For a project 
focused on suspicious activity or forgery detection—where 
nuanced spatial relationships and subtle visual cues are key—the 
representational richness and transfer-learning advantages of 
VGG16 decisively outperform the linear, feature-dependent 
approach of Logistic Regression. 

IV. RESULT AND ANALYSIS 

 

                 
Figure 3: GUI Desktop Application 
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Figure 4: After Uploaded the dataset. 

 

 
                  Figure 5: Image processing for ML (LRC) 

 

 

 
 Figure 6: After image processing for ML 

 
 
 

 
Figure 7: After train LRC   

 
Figure 7 shows the existing Logistic Regression (LR) classifier 
achieves an accuracy of 70.45%. Its precision of 71.57% 
indicates that when it predicts a positive class, about 71.57%, 
while the recall of 70.45% suggests that it successfully identifies 

70.45% of actual positive cases. The F1-score of 70.07% 
 

 
Figure 8: Data splitting for DL 

 
Figure 8 shows that In deep learning, dataset splitting is crucial 
for training and evaluating models effectively. Here, 80% of the 
images (176 images) are used for training, allowing the model to 
learn patterns and features, while 20% of the images (44 
images)are used for validation or testing to assess its 
generalization ability. Typically, the data is split into three sets: 
training (80%), validation (20%). 

 

 
    Figure 9:CF of LRC 

 

 
Figure 10: Proposed System VGG16 
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Figure 11: CF of VGG16 
 
 

s 

 
Figure 12: Output 

 

 

 Comparative Analysis 

Metric Logistic Regression 

Classifier (LRC) 

VGG16 (Proposed  

System) 

Accuracy 70.45% 93.18% 

Precision 71.57% 94.0% 

Recall 70.45% 93.18% 

F1-Score 70.07% 93.15% 

 

V. CONCLUSION 
The The study demonstrates that VGG16, a deep learning-based 
Convolutional Neural Network (CNN), significantly 
outperforms the traditional Logistic Regression (LR) classifier 

in detecting copy-move forgeries. The confusion matrix and 
performance metrics indicate that VGG16 provides higher 
accuracy, recall, and precision, making it a more reliable and 
efficient approach for forgery detection. One of the most notable 
findings is that VGG16 achieves zero false negatives (FN = 0), 
meaning that it successfully identifies all tampered images 
without missing any. This ensures 100% recall, which is critical 
in forgery detection, as missing a tampered image could lead to 

serious security risks. Furthermore, with only three false 
positives (FP = 3), VGG16 maintains a high precision rate, 
meaning it rarely misclassifies normal images as forgeries. This 
reduces unnecessary alarms and improves trust in the system’s 
detection capability. The deep feature extraction ability of 
VGG16 plays a crucial role in its superior performance. Unlike 
Logistic Regression, which relies on manually selected features, 
VGG16 automatically learns complex patterns and hierarchical 

structures within images. This enables it to detect both global 
and local inconsistencies, which are essential in identifying 
copy-move forgeries where tampered regions may blend 
seamlessly with the original image. In contrast, the Logistic 
Regression classifier struggles with high false negatives and 
false positives, indicating its limited ability to accurately 
distinguish between normal and tampered images. 

VI. FUTURE SCOPE 

The future scope for enhancing digital image forgery detection 
using transfer learning with the VGG16 model involves 
exploring multi-task learning, hybrid approaches, and large-
scale dataset evaluations to improve detection accuracy. Real-
world applications, adversarial attack detection, and 
explainability techniques can also be developed. Additionally, 
cross-domain evaluations and continuous learning frameworks 
can enhance the model's adaptability and reliability. By pursuing 
these directions, researchers can further strengthen digital image 

forgery detection systems, enabling more effective and 
trustworthy solutions for various applications. 
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